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In this paper, we examine the level-spacing distribution P (S) of the rectangular billiard with a single
pointlike scatterer, which is known as almost integrable. It is shown that the observed P(S) is a new
type, which is quite different from the previous conclusion. Even in the strong-coupling limit, the
Poisson-like behavior rather than Wigner-like behavior is seen for S % 1, although the level repulsion
still remains in the small-S region. The difference from the previous works is analyzed in detail.

PACS number(s): 05.45.+b

To our knowledge, there are no bounded, undriven
quantum systems that exhibit chaos (exponential instabil-
ity), even if their classical counterparts are chaotic [1].
However, they seem to behave differently concerning
their eigenvalues and wave functions, depending on
whether the classical orbits are regular or chaotic. Tak-
ing the level statistics of quantum systems as an example,
there is a conjecture that the classically chaotic systems
obey the Wigner statistics, whereas the regular systems
obey the Poisson statistics. It is one of the general trends
in studying quantum systems to examine their properties
in conjunction with those of the corresponding classical
counterparts [2-5].

Quantum aspects of so-called almost integrable systems
[6], which are classically nonchaotic, have attracted a
renewed attention in recent years. Many numerical and
theoretical works have already been done on the almost
integrable systems [7-23]. One of them is the rectangular
billiard with a single pointlike scatterer [18-21]. In Ref.
[20], Seba and Zyczkowski examined this system over a
wide range of energy excitation and revealed some new
aspects. One of their conclusions is that the level-spacing
distribution P (S) becomes closer to the Wigner distribu-
tion as the coupling strength increases, although the fine
structure [such as the asymptotic (large-S) behavior] does
not conform to the prediction of the Gaussian orthogonal
ensemble (GOE). The appearance of a Wigner-like distri-
bution in this classically nonchaotic billiard has led
several authors to conjecture that this might represent
the quantum signature of chaos generated by the proba-
bilistic nature of the wave function [13,18,20]. In order
to emphasize that such phenomena originate from quan-
tum effects, they are called wave chaos in Refs. [18] and
[20]. Wave chaos is distinguished from quantum chaos in
the sense that the latter means the properties of quantum
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systems if (and only if) their classical counterparts are
chaotic.

In Ref. [20] the Green’s-function method is used to in-
vestigate the rectangular billiard with a single pointlike
scatterer. While it does not formally include any approx-
imation, the truncation of the basis is inevitable in the ac-
tual numerical calculation. One should be most careful
to decide the range of the basis because of the singularity
of the interaction under consideration. In this Rapid
Communication, we will examine the effect of the restric-
tion of the basis on P(S). This might appear to be a
merely technical problem in the numerical treatment,
without any physical interest. As we will see later, how-
ever, this is not the case, and the strictest care to the
basis is essential for this system. In fact, the main con-
clusion is that the level-spacing distribution P(S) in the
strong-coupling limit never becomes Wigner-like but be-
longs to a new class, which might be said to be intermedi-
ate between regularity and chaos.

As the mathematical formalism is explained in full in
Refs. [20] and [21], we only summarize those points that
are necessary in the following discussion. The Hamil-
tonian of the rectangular billiard with a pointlike scatter-
er is formally given by

A
H=—W+v08(x —X0)8(y —yo) , M

where M is the mass of a particle, and v, and (x4,y,) are
the strength and position of the scatterer, respectively.
The Green’s function of this system is given by

G(x,y;x",y32)=G{"(x,y;x",y";z)
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Here, z is the energy variable, G{°’ is the Green’s function
of the  billiard without any scatterer, and
G'%x¢,y0;Xx0,¥0;2) describes the propagation of the parti-
cle that begins to propagate at the pointlike scatterer and
ends there. Clearly, the second term on the right-hand
side in Eq. (2) means the multiple scattering caused by
the pointlike scatterer. [Although the authors of Ref.
[20] call G2(x4,p0;x¢,70;2) With opposite sign in Eq. (2)
the meromorphic function £(z), we just call it the Green’s
function in the following discussion.] From Eq. (2), we
see that, in the Green’s-function method, the eigenvalue
problem is equivalent to solving the following transcen-
dental equation:

G(O)(XO,J’o;xo,J’oﬁ):UL . 3)
0

If the scatterer is located at the center of the rectangle,
which is the case that we will examine in this paper, the
Green’s function with the Dirichlet condition on the bor-
der of the billiard is given by

G'2)=G"x4,y0;%0,Y0;2)

4 - 1
= 2 - -
L1, non, =1 Z'—E(Z%)X—I,Zny—l
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Here, E!”, is the eigenvalue of the billiard without an
On) g y

obstacle and I, and /, are the side lengths of the rectangle
(xo=1./2 and y,=1,/2). One should notice that, when
the scatterer is placed at the center of the billiard, the
scatterer affects only even-even parity states. The special
feature in the case of singular interaction can be seen in
the second term of the Green’s function in Eq. (4), while
the Green’s function G{* in the case without any obstacle
in the billiard does not have the corresponding term.
(The appearance of this term is closely related to the
boundary condition around the scatterer. In order to
determine its exact form, one needs the help of some
theorems in the functional analysis [20,21]. See also Refs.
[24] and [25].) One realizes that each of two terms in the
Green’s function G'°(z) has logarithmic divergence when
summed separately, although the sum of them leads to a
finite value.

We examine the case in which M =8, [, = /3, and
I,=3/m. In this particular parametrization, the average
density of even-even parity states is equal to 1 according
to Weyl’s formula.

To see a general feature of the Green’s function
G'(z), the schematic graph of the Green’s function is
shown in Fig. 1. Here, the eigenvalues {E ‘2?,1 —1,2n,—1} Of
even-even parity states in the unperturbed system are
renamed in ascending order as { E\”’}. One can easily see
that each eigenvalue E, of the perturbed system is isolat-
ed between two unperturbed energies and becomes larger
as one increases the strength of the coupling. In the
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FIG. 1. Schematic graph of the Green’s function in Eq. (4).

strong-coupling limit (vy,= ), the set of eigenvalues is
just that of zeros of the Green’s function.

In order to get the solutions of Eq. (3) numerically, one
must limit the range of the summation with minimum
and maximum values of n, n_;, and n_,,,

©) "max 1 E)®
Gapprox(z)=4 2 z—E,(,O) (E,(,O))2+1

n=n_.
min

(6)

The prescription of the limitation in Ref. [20] is to take
M min =1 —500 and n,,, =I +500 for looking for a root E; of
Eq. (3) localized between E[® and E/9,. Hereafter, we
refer to this prescription as the truncation (I) prescrip-
tion. At first sight, this seems to be quite reasonable be-
cause the main contribution on the Green’s function
around the energy E, comes from the terms that have n
around /. According to the truncation (I), one gets the
level-spacing distribution P(S) without much numerical
labor. As a typical example, we show the case of the
strong-coupling limit in Fig. 2. This corresponds to Fig.
2(c) in Ref. [20] and of course shows quite similar struc-
ture. One might conclude from Fig. 2 that the level-
spacing distribution of the rectangular billiard with a
pointlike scatterer is almost Wigner-like in the strong-
coupling limit.

We now examine the accuracy of truncation (I). Fig-
ure 3 shows the same calculation as above, except that
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FIG. 2. Level-spacing distribution P(S) in the case of the
strong-coupling limit according to truncation (I); 7y, = — 500
and np,,=!+500 in Eq. (6). Statistics are taken within the
eigenstates indicated in the figure. The Wigner (solid line) and
Poisson (broken line) distributions are also shown for reference.
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1.2 preo T If 1<<E, <z<E, andz=~(E, +E, )/2, then one
TRUNCATION (II) ] min max min max
L 1 obtains
1.. vp=0o° ]
0.8 L 100-4000 3 E"min
S 8GY(z)~4 lnz+1nE . (11
P(S) } _: max
F 3 This shows that if one evaluates, for example, E
0.4 ~L E (=1000) according to truncation (I), the numerical error
. 3G'(1000) ~4(1n1000+1n X )~4(6.90—1.09) ~23.2
0.0 bl it is accompanied. Also, Eq. (11) shows that the error is
0.0 1.0 2.0 3.0 much larger as one increases the energy. Clearly, the un-

FIG. 3. Same as Fig. 2, except according to truncation (II);
R min = 1 and n,,, = 100000 in Eq. (6).

npin=1 and n_, =100000. Hereafter we refer to this
case as the truncation (II) case. We will later justify this
truncation of the basis in an analytic manner in this pa-
per. One easily sees the drastic changes even in a qualita-
tive level. For SR 1, P(S) is rather more Poisson-like
than Wigner-like, although the level repulsion still
remains in the small-S region. The level repulsion is re-
garded as a common feature among the various almost
integrable systems [8,13,16,23]. For the almost integrable
billiard with a single pointlike scatterer, it is rigorously
proven in Ref. [21] that S<P(S)<2S as S—O0 and
P(S)>e S for large S hold. The level-spacing distribu-
tion in Fig. 3 is consistent with these estimates. Roughly
speaking, one might say that it shows an intermediate
feature between regularity and chaos.

In order to clarify the reason for the disagreement be-
tween the level-spacing distributions in Figs. 2 and 3, we
estimate the numerical error in the Green’s function re-
lated to the truncation of the basis. The numerical error
comes from the terms that are neglected by the limitation
of the summation in Eq. (6),

SG(O)(Z)EG(O)(Z)_G(a(;i)rox(Z)

n_. —1
min © 1
ngl n=n§“+l z -—Er(tO)
E(O)
. 7
(E)?+1 @

To estimate the order of magnitude of the error, we con-
sider the unperturbed energy E!* as the continuous vari-
able and replace the summation by the integral as

E, -
J, "+ St

+
z—E E?+1
Here, one should notice that the mean level density is
constant and equal to 1 in our parametrization. The in-
tegral in Eq. (8) is elementary and leads to

8G“”(z):4[F(z,E,,mm)——F(z,O)—-F(z,E,,max)] , 9)

858GV (z)~4

]dE . (8)

where the function F is defined by
E*+1

F(z,E)=11In Z—EF

(10)

derestimation of the Green’s function leads to the un-
derestimation of the eigenvalues.

The accuracy of the zeros is not directly related to the
magnitude of the error in the Green’s function, but to the
ratio between the magnitude of the error and the deriva-
tive of the Green’s function at zero. Therefore, we fur-
ther examine the derivative of the Green’s function. Asa
typical example, we show in Table I some eigenvalues
around E |y, obtained by truncation (I) and the deriva-
tive of the Green’s function at the corresponding zero.
For comparison, we show the result with truncation (II).
It can be easily seen from Table I that, whereas the zero
is fairly accurate if the derivative there is large enough
compared to the error (about 20), this is not the case if
the derivative is small. In fact, some eigenvalues have
numerical errors comparable to the mean energy
difference between nearest-neighbor levels. It is also un-
fortunate for truncation (I) that the sequence of the abso-
lute value of the derivatives looks to be random. So, the
accuracy of a zero just next to a very accurate one can be
very poor. This of course has a serious influence on
P(S).

On the contrary, the numerical error by truncation (II)
is given by

8G‘°’(z)z—4F(z,Enmax), (12)

and is quite small even for E ,, ~4000,
8G'©(4000)~—0.16 .

Also, one can see that the large magnitude of the deriva-
tives of the Green’s function ensures the accuracy of the

TABLE 1. Zeros and the derivatives of the Green’s function
at the corresponding zeros. The second and third columns
show the results according to truncation (I), whereas the fourth
and fifth columns show the case of truncation (II).

n E, (G approx ) (E,)| E, (G ipprox )'(E, )
995 994.29 49 994.52 251
996 995.60 23 996.03 169
997 996.55 89 996.71 292
998 997.30 95 997.43 365
999 999.39 12 1000.13 110

1000  1000.46 782 1000.49 1032
1001 1001.95 16 1002.44 178
1002  1003.50 15 1004.24 111
1003 1004.75 77 1005.00 159
1004  1005.31 618 1005.34 873
1005  1006.32 30 1006.70 171
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zeros. The absolute value of the typical error with a zero
is estimated to be, at most, of the order of 1073, namely,
0.1% compared to the mean level spacing.

The physical reason why such a large phase space is
necessary is obvious. It is the singularity of the interac-
tion between the unperturbed levels. In fact, any two
even-even parity states couple to each other with the
same coupling strength when the scatterer point is locat-
ed at the center of the billiard. The presence of singular
points, which only have a negative curvature in the phase
space, is a feature common to the almost integrable sys-
tems. Extreme care with numerical accuracy is required
in order to analyze such systems.

The reminiscence of the Poisson-like behavior (regular-
ity) for S* 1 in the strong-coupling limit is surprising.
The billiard with a pointlike scatterer seems to be in re-
markable contrast to a polygonal billiard, at least con-
cerning the level-spacing distribution [23]. For the latter
system, the level-spacing distribution is considerably
more Wigner-like rather than Poisson-like, even in the
case of g =2 or 3, where g is the genus number for the
polygonal billiard. (For the billiard under consideration,
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the genus number is g =2.) One possible interpretation
might be that the degree of chaos of the quantized almost
integrable billiard with pointlike scatterers is much small-
er than previously believed. In order to draw a definite
conclusion, a more extensive analysis is necessary.

In summary, we have shown that the level-spacing dis-
tribution P (S) of the rectangular billiard with a pointlike
scatterer in the strong-coupling limit belongs to a new
class. Contrary to the previous conclusion, it does not
show Wigner-like behavior, but shows Poisson-like
behavior for SR 1, although there remains the level
repulsion in the small-S region. A wide range of the
Fourier basis is demanded in order to get the correct ei-
genvalues of this system.
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